TuPAQ: An Efficient Planner for Large-scale Predictive Analytic Queries

نویسندگان

  • Evan R. Sparks
  • Ameet Talwalkar
  • Michael J. Franklin
  • Michael I. Jordan
  • Tim Kraska
چکیده

The proliferation of massive datasets combined with the development of sophisticated analytical techniques have enabled a wide variety of novel applications such as improved product recommendations, automatic image tagging, and improved speech-driven interfaces. These and many other applications can be supported by Predictive Analytic Queries (PAQs). A major obstacle to supporting PAQs is the challenging and expensive process of identifying and training an appropriate predictive model. Recent efforts aiming to automate this process have focused on single node implementations and have assumed that model training itself is a black box, thus limiting the effectiveness of such approaches on largescale problems. In this work, we build upon these recent efforts and propose an integrated PAQ planning architecture that combines advanced model search techniques, bandit resource allocation via runtime algorithm introspection, and physical optimization via batching. The result is TUPAQ, a component of the MLbase system, which solves the PAQ planning problem with comparable quality to exhaustive strategies but an order of magnitude more efficiently than the standard baseline approach, and can scale to models trained on terabytes of data across hundreds of machines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression Planner for Time Series Database with GPU Support

Nowadays, we can observe increasing interest in processing and exploration of time series. Growing volumes of data and needs of efficient processing pushed research in new directions. This paper presents a lossless lightweight compression planner intended to be used in a time series database system. We propose a novel compression method which is ultra fast and tries to find the best possible co...

متن کامل

COMPUTATIONALLY EFFICIENT OPTIMUM DESIGN OF LARGE SCALE STEEL FRAMES

Computational cost of metaheuristic based optimum design algorithms grows excessively with structure size. This results in computational inefficiency of modern metaheuristic algorithms in tackling optimum design problems of large scale structural systems. This paper attempts to provide a computationally efficient optimization tool for optimum design of large scale steel frame structures to AISC...

متن کامل

Semantic Constraint and QoS-Aware Large-Scale Web Service Composition

Service-oriented architecture facilitates the running time of interactions by using business integration on the networks. Currently, web services are considered as the best option to provide Internet services. Due to an increasing number of Web users and the complexity of users’ queries, simple and atomic services are not able to meet the needs of users; and to provide complex services, it requ...

متن کامل

بهبود الگوریتم انتخاب دید در پایگاه داده‌‌ تحلیلی با استفاده از یافتن پرس‌ وجوهای پرتکرار

A data warehouse is a source for storing historical data to support decision making. Usually analytic queries take much time. To solve response time problem it should be materialized some views to answer all queries in minimum response time. There are many solutions for view selection problems. The most appropriate solution for view selection is materializing frequent queries. Previously posed ...

متن کامل

Analysis of users’ query reformulation behavior in Web with regard to Wholis-tic/analytic cognitive styles, Web experience, and search task type

Background and Aim: The basic aim of the present study is to investigate users’ query reformulation behavior with regard to wholistic-analytic cognitive styles, search task type, and experience variables in using the Web. Method: This study is an applied research using survey method. A total of 321 search queries were submitted by 44 users. Data collection tools were Riding’s Cognitive Style A...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1502.00068  شماره 

صفحات  -

تاریخ انتشار 2015